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We study an active random walker model in which a particle’s motion is determined by a self-generated
field. The field encodes information about the particle’s path history. This leads to either self-attractive or
self-repelling behavior. For self-repelling behavior, we find a phase transition in the dynamics: when the
coupling between the field and the walker exceeds a critical value, the particle’s behavior changes from
renormalized diffusion to one characterized by a diverging diffusion coefficient. The dynamical behavior for all
cases is surprisingly independent of dimension and of the noise amplitude.
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Active walkers are random walkers whose motion is de-
termined by a potential surface which is amenable to change
by the walkers themselves �1�. They are one of several dif-
ferent classes of random walks in which walkers interact
with their path history. The memory of these walkers leads to
interesting properties, uncommon in pure random walks.
Other common types of such self-interacting walks are the
reinforced random walk �2,3� and the self-avoiding random
walk �4,5�.

Models based on active walkers have been used to study a
number of phenomena, including ant foraging patterns �6�,
traffic �7�, the formation of human and animal trail systems
�8�, animal mobility �9�, chemotactic aggregation �10,11�,
and the self-assembly of networks �12�. The advantage of
formulating problems in such a formalism is that it enables
analytic study using methods from statistical physics and the
general theory of stochastic processes. In this paper, we ana-
lyze in detail a fairly generic type of active walker model, in
which a particle interacts with its path history by means of a
self-generated field. This model is related to the self-driven
many-particle system first introduced by Schweitzer and
Schimansky-Geier �1�, which studied it by means of a mean-
field approximation applied on the stochastic model. New-
man and Grima �11� analyzed the effect of fluctuations on
the system’s dynamics by means of a many-body theory ap-
proach. The spatiotemporal correlations make the problem
difficult to understand, usually confining analysis to the case
of weak coupling between particles and the generated field
�11� or to the case of small noise �10�. Indeed even the case
of a single self-driven particle is nontrivial �see, for example
�5,10,13�� . We study a variant of the single self-driven par-
ticle model and develop a general theory to elucidate the
particle’s rich and complex dynamical behavior. This ap-
proach differs from the previous ones, in that it is valid for
all coupling strengths and for both weak and strong noise.
The model is potentially applicable to understanding a
chemotactic biological system under certain conditions, a
topic briefly discussed at the end of this paper.

Consider a random walker whose motion is described by
the following coupled equations:

mẍc�t� + ẋc�t� = ��t� + �� � ln ��xc,t� , �1�

�t��x,t� = D1�
2��x,t� − ���x,t� + ��„x − xc�t�… . �2�

Equation �1� is a Langevin equation describing the motion of
a walker with mass m. The stochastic variable � is white
noise defined through the statistical averages ��i�t��=0 and
��i�t�� j�t���=2D0�i,j��t− t��, where i and j refer to the spatial
components of the noise vectors. The mass is assumed to
satisfy the condition m	1, implying that in the absence of
self-interaction the walker’s dynamics are of the overdamped
type. The walker’s diffusion coefficient in this case is D0.
The self-generated field is denoted by �; its temporal dynam-
ics are determined by the reaction-diffusion equation �2�. We
shall refer to the field as a chemical field since this is most
consistent with a physical interpretation of Eq. �2�. Then the
latter equation describes the continuous local release of
chemical by the walker at a rate �, the diffusion of the
chemical with diffusion coefficient D1 and its decay at a
constant rate �.

The self-interaction comes from the second term on the
right-hand side of Eq. �1�. This term implies that the walker’s
motion is partly determined by the local gradient of the field.
Note that the field encodes information about the walker’s
path history, meaning that the walker’s motion at any given
time is a complicated function of its previous whereabouts.
The strength of the coupling between the field and the walk-
er’s motion is determined by �. The constant � can take
values 1 or −1: for �=1, the walker tends to explore regions
already visited �a self-attracting walker� whereas for �=−1
the opposite is true �a self-repelling walker�. We assume that
the initial chemical concentration is described by some func-
tion �0�x , t� which is greater than zero at all points in space.

The Langevin formulation is not usually considered the
most convenient representation for the purposes of analytic
calculations and so it is customary to derive a differential
equation for the single-particle probability distribution �see
Ref. �11�, for example�. For the problem at hand, this ap-
proach does not permit much analytic progress in under-
standing the walker’s behavior. Applying a mean field ap-
proximation on the differential equation for the single-
particle probability distribution one obtains a Fokker-Planck-
type equation, which then permits a perturbative analysis in a
coupling parameter. This approach ignores the important spa-
tiotemporal correlations inherent in the problem and enables
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one to understand the walker’s behavior only when the cou-
pling strength � is very small. The non-Markovian nature of
the problem makes its solution a challenging task.

We here present a simple method to extract the asymptotic
behavior of the active walker model. The results can also be
reproduced by the method described in �10�. However, the
method to be presented here is more transparent and gives a
physically tractable picture of the complex underlying dy-
namics. Its main advantages are that spatiotemporal correla-
tions are not ignored and that it enables an understanding of
the motile behavior for all values of the coupling strength
and of the other parameters. We start by switching to a de-
scription in discrete time t=n
t where n�N. Space is con-
tinuous. The walker’s position at time t+
t is determined by
the gradient of the logarithm of the chemical concentration it
measures at time t. Since the walker secretes an amount of
chemical �
t at every time step, then if the walker is at
position xc�t� at time t, the chemical field sensed by the
walker at time t is given by

� = �
n=1

t/
t
�
t

�4�D1n
t�d/2

�exp�− �n
t −

�
i=1

d

�xc
i �t� − xc

i �t − n
t��2

4D1n
t
	 = �

n=1

t/
t

�n,

�3�

and the gradient of the field is given by

�� = − �
n=1

t/
t
�xc�t� − xc�t − n
t��

2D1n
t
�n, �4�

where xc
i �t� is the ith component of the particle position vec-

tor xc�t� and d is the dimensionality of the space in which
particle movement occurs. Since the chemical decays in a
time of the order 1 /� then the concentration at time t will be
approximately determined by the previous positions of the
walker at times t� t−1/�. This implies that the sum in Eqs.
�3� and �4� can be truncated at nmax=1/�
t. Now consider
the term xc�t−n
t�. Since we are interested in the walker’s
behavior in the asymptotic limit t�1/�, then n
t�nmax
t
=1/�	 t. Thus it is possible to replace the term xc

i �t−n
t� in
the above two equations by its Taylor series expansion.
Keeping terms only to first order in 
t we have

�ln ��xc,t� =
���xc,t�
��xc,t�

= −
ẋc�t�
2D1

. �5�

Thus from Eq. �1� and the above equation, it follows that for
long times the behavior of the walker is dominated by the
effective Langevin equation

mẍc�t� + 
1 +
��

2D1
�ẋc�t� = ��t� . �6�

It is not possible to systematically calculate corrections to
this equation by keeping more terms in the Taylor expansion
of the position terms. It can however be shown that such

corrections are negligible in high dimensions, d�2. These
issues are discussed more fully in the Appendix.

The modified Langevin equation �6� is clearly valid after
some time t* such that t*�1/�. We define �= �1
+�� /2D1� /m and integrate Eq. �6� to get an equation for the
time evolution of the ith component of the velocity vector:

ẋc
i �t� = ẋc

i �t*�exp�− ��t − t*�� +
1

m
�

t*

t

dt� exp�− ��t − t����i�t�� .

�7�

Then it follows that the velocity autocorrelation function is
given by

�ẋc
i �t�ẋc

i �s�� = ẋc
i �t*�2 exp�− ��t + s − 2t*�� +

D0

�m2 exp�− ��s

− t�� − exp�− ��s + t − 2t*��� . �8�

Using a Green-Kubo relation DR=�t*
t dt��ẋc

i �t�ẋc
i �t��� it is pos-

sible to determine the effective �renormalized� particle diffu-
sion coefficient DR:

DR =
ẋc

i �t*�2

�
exp�− ��t − t*��1 − exp�− ��t − t*��� +

D0

�2m2

�1 + exp�− 2��t − t*�� − 2 exp�− ��t − t*��� , �9�

which evaluated in the limit t→� leads us to the final set of
results:

Dr=�D0
1 +
�

2D1
�−2

, � = 1, "� ,

D0
1 −
�

2D1
�−2

, � = − 1, � � 2D1,

� , � = − 1, �  2D1.
� �10�

We defer a discussion of the physics behind these results for
later. For the moment we focus on the numerical validation
of the theory.

For the case of a self-attracting walker ��=1� it is pre-
dicted that �i� the asymptotic behavior is diffusion with a
renormalized diffusion coefficient whose magnitude de-
creases with increasing values of the coupling parameter �,
and �ii� the behavior is independent of dimension �superuni-
versality in the velocity correlations�. We test these predic-
tions by numerically integrating the model equations �1� and
�2� �see Fig. 1�. The diffusion coefficient in all simulations is
calculated from the slope of plots of the variance versus time
for the time range t� �10,1000�. The initial chemical con-
centration is a Gaussian centered at the origin, though any
nonzero function is suitable.

As expected, we find that the asymptotic behavior is dif-
fusion characterized by renormalized diffusion coefficients
which are relatively independent of the dimension �Fig. 1�.
However, there is some discrepancy between the theoretical
values of DR and the ones obtained from the numerics. Re-
gression of the one-dimensional data in Fig. 1 shows that the
numerical data is best fit by an equation of the form �see Fig.
2�: DR=D0�1+k� /2D1�−2 where k=0.81±0.01 �104 realiza-
tions�. The difference between this value and the theoretical
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value of unity, stems from a combination of the approxima-
tions used in deriving the effective Langevin equation �6�
and numerical error due to a finite time step �note that the
simulations are off-lattice and thus there is no numerical er-
ror due to a finite spatial step�. As discussed in the Appendix,
it is not possible to systematically calculate corrections to the
effective Langevin equation. However, by repeating the
simulations with a time step an order of magnitude smaller
than those in Figs. 1 and 2, we find that the value of k

increases to k=0.87±0.02 �2�103 realizations�, which is
closer to the theoretical value. Hence it is probable that the
discrepancies between numerics and theory are in significant
part due to numerical error rather than to the approximations
implicit in deriving Eq. �6�. This is plausible since the next-
order correction to Eq. �6� is proportional to the walker’s
acceleration ẍc�t� �see Eq. �A1� in the Appendix� which is
negligible for a self-attracting walker since the dynamics are
overdamped for small coupling �m	1� and become more

FIG. 1. �Color online� Plot of
the renormalized diffusion coeffi-
cient DR versus the nondimen-
sional coupling parameter f ,
where f =� /2D1. The parameter �
equals 1, implying that the walker
has a tendency to explore previ-
ously visited spatial regions. The
other parameters are m=10−6, D0

=1, D1=1,�=1, �=1, and �t
=0.1 with 104 samples. As pre-
dicted, the renormalized diffusion
coefficient is the same in one, two,
and three dimensions.

FIG. 2. Plot of w=�D0 /DR vs
the nondimensional coupling pa-
rameter f , where f =� /2D1, for
data obtained from one-
dimensional simulations. Param-
eter values as in Fig. 1. This veri-
fies the functional form predicted
by theory. The solid line is the
best fit through the data points.
This line has a gradient of 0.81
and intercept of 0.99—theory pre-
dicts a gradient of 1.00 and an in-
tercept of 1.00.
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strongly overdamped as the coupling increases �this is since
the coefficient of the velocity term in Eq. �6� increases with
the coupling�.

For the case of a self-repelling walker ��=−1� theory pre-
dicts that �i� if the coupling is less than a critical threshold,
��2D1, then the asymptotic behavior is diffusion with a
renormalized diffusion coefficient, �ii� if the coupling is
above this threshold, �2D1, the particle diffusion coeffi-
cient diverges, and �iii� the behavior is independent of di-
mension. We tested these predictions by simulations. We find
that near the predicted singularity, 0.9�� /2D1�1, the
variation of DR with coupling is given by

DR/D0 � 
1 −
�

2D1
�−�

, �11�

where �=2.10±0.03 in one dimension, 2.23±0.02 in two
dimensions, and 2.10±0.02 in three dimensions �Fig. 3�.
These estimates agree well with the theoretical value of �
=2. The constant of proportionality in Eq. �11� is dependent
on dimension, a feature not predicted by theory—
interestingly, as shown in Fig. 3, the data in three dimensions
is closest to the exact theoretical result. However, these fea-
tures are not completely unexpected. This is since the coef-
ficient of the velocity term in Eq. �6� decreases with increas-
ing coupling, meaning that the acceleration of the walker
becomes a determining factor as the critical coupling is ap-
proached. Thus the next-order correction to Eq. �6� �see Eq.
�A1� in the Appendix� is probably not negligible �unlike in
the case of a self-attracting walker�. As discussed in the Ap-
pendix, these corrections are small in high dimensions and
thus mostly significant in low dimensions. These theoretical
arguments support the numerical data in Fig. 3.

Now we numerically explore the walker’s asymptotic be-
havior for � /2D11. In this regime, the simulations break

down after a few time steps. Using smaller values of the
numerical time step does not help much and makes the nu-
merical analysis computationally very expensive. This is
overcome by simulating a model given by the equations

ẋc�t� = ��t� − �
���xc,t�

� + ��xc,t�
, �12�

�t��x,t� = D1�
2��x,t� − ���x,t� + ���x − xc�t�� . �13�

Since we are really interested in the case �=0, we
obtained data for several small values of � with the aim of
extrapolating to the desired limit. As shown in Fig. 4, we find
that for � /2D1=3 the renormalized diffusion coefficient
clearly tends to infinity as �→0. This is found to be gener-
ally true for � /2D11, meaning that the purported transition
at � /2D1=1 is from finite DR to DR=�, in agreement with
theory. Note that transitions in random walks with positive
long correlations are known �14�, though in this case the
dynamical transition is from normal diffusion to superdiffu-
sion in a one-dimensional space.

Now we discuss the theoretical results from a physical
perspective. In the absence of self-interaction, the walker’s
motion is determined by the frictional force which is directly
proportional to its velocity rather than by inertia �over-
damped dynamics�. For the case of a self-attracting walker
��=1� it is expected that the walker spans space more slowly
than for the case of no self-interaction: this typically means
subdiffusive behavior or diffusive behavior with a renormal-
ized diffusion coefficient smaller than D0. We have shown
that to a first approximation obtained by truncating the walk-
er’s memory to a time of the order 1 /�, the self-interaction
leads to a renormalization of the frictional force. This implies
that the dynamics are always overdamped and that the

FIG. 3. Plot of the natural
logarithm of the renormalized dif-
fusion coefficient DR versus the
natural logarithm of the nondi-
mensional parameter 1− f , where
f =� /2D1. Note that the f values
in this plot vary between 0.9 and
0.98, meaning that we are explor-
ing the walker’s behavior near the
theoretically predicted singularity
at f =1. The parameter � equals
−1, implying that the walker has a
tendency to explore previously
unvisited spatial regions. The
other parameter values are exactly
as in Fig. 1. This graph confirms
that DR� �1− f�−2, implying a sin-
gularity at f =1 in all dimensions.
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asymptotic behavior is that of renormalized diffusion, not
subdiffusion.

For the case of a self-repelling walker ��=−1� it is ex-
pected that the walker spans space faster than for the case of
no self-interaction: this typically means superdiffusive be-
havior or diffusive behavior with a renormalized diffusion
coefficient greater than D0. We have shown that the self-
interaction leads to a renormalization of the magnitude of the
frictional force experienced by the walker. The frictional
force decreases with increasing coupling � between the
walker’s motion and the chemical field until at a particular
value of the coupling, �=2D1, the frictional force is exactly
zero and the dynamics of the walker are purely determined
by the inertial force. Thus the walker’s behavior changes
from one characterized by a low Reynolds number for weak
self-interaction to behavior characterized by a high Reynolds
number as one approaches the critical coupling. When the
coupling exceeds the critical value, we find that the walker
experiences a force that is proportional to the velocity but
has the opposite effect of damping; the random fluctuations
in the velocity due to the stochastic force are amplified rather
than suppressed and thus the velocity of the walker increases
uncontrollably with time, leading to an infinite velocity. This
is the underlying reason for the divergence of the particle
diffusion coefficient in this parameter regime.

It is worthwhile to compare the walker’s behavior with
logarithmic response to the behavior with linear response.
The linear response model was studied by Grima �10�, who
found that if the particle diffusion coefficient �in the absence
of self-interaction� is small then �i� for a self-attracting
walker, the asymptotic behavior is that of renormalized dif-
fusion, and �ii� for a self-repelling walker, the asymptotic
behavior is renormalized diffusion below a critical threshold
and ballistic diffusion above this threshold. The first differ-

ence to be emphasized between the two models with differ-
ent responses is that for the logarithmic response the results
are generally valid for any value of the particle diffusion
coefficient and of the other parameters, whereas for the linear
response model the results are restricted to small particle to
chemical diffusion coefficients �small noise analysis�. In
other words the logarithmic response gives rise to behavior
which is independent of the amplitude of the noise, an un-
usual property—for example, for intermediate to large noise,
simulations indicate that the dynamics of a particle with lin-
ear response are not that of renormalized diffusion. It is also
to be noted that the value of the critical coupling in the linear
model is dimensionally dependent, unlike the superuniversal
behavior in the present case. The logarithmic response �� /�
is weaker than the linear response �� when �1 and stron-
ger otherwise. For the case of a self-attracting walker, the
walker tends to stay in spatial regions that it has previously
visited, meaning that the sampled chemical concentration �
at all times is significant and not small; thus in this case we
expect the walker with linear response to exhibit a stronger
or at least equally strong perturbation of its motion compared
to that with logarithmic response. This reasoning agrees with
our results. For the case of a self-repelling walker, the walker
tends to avoid spatial regions that it has previously visited,
meaning that the sampled chemical concentration tends to be
very small; thus in this case we expect the walker with loga-
rithmic response to exhibit a stronger or at least equally
strong perturbation of its motion compared to that with linear
response. This qualitatively explains the onset of the diverg-
ing diffusion regime for logarithmic response compared to
the onset of ballistic diffusion for linear response.

As we mentioned in the Introduction, the model has po-
tentially some applications in biology. The self-driven many-
particle system is a model for chemotactic aggregation or

FIG. 4. Determination of the
renormalized diffusion coefficient
DR for f =3 using the same param-
eters as in Fig. 3. The model
simulated is that given by Eqs.
�12� and �13�. The solid line is the
best fit through the data points, in-
dicating that DR� log10��−k�
where k is some positive number.
This suggests that in the limit �
→0, DR→� for f 1.
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dispersion, behavior exhibited by a number of organisms,
such as the slime mold �15�. The particles are then motile
cells which secrete chemical and which simultaneously move
up �or down� gradients of this chemical. The self-driven
single particle can be thought of as a model for a chemotactic
cell which is far away from the bulk of other cells; in that
case the cell will predominantly sense its own chemical
rather than that of other cells. In the linear response models
studied by several authors, the cell’s average velocity is as-
sumed to be linearly proportional with the gradient of the
local chemical field. In our model, the response is logarith-
mic which is known to be more realistic in some specific
cases. This type of response is frequently referred to as the
Weber-Fechner law and is thought to describe the sensory
adaptation of a number of chemotactic cells to chemotactic
signals, over certain concentration ranges �16–18�. With this
proviso, our present model may perhaps be applicable to
understanding some features of sensory adaptation at the
micro-organism level.
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APPENDIX

It is in principle possible to calculate the next-order cor-
rection to Eq. �6� by retaining terms to second order in the
Taylor series expansion of xc

i �t−n
t� in Eqs. �3� and �4�.
Furthermore, since the exponent is slowly varying, the the
sums over n can be approximated by integrals, leading to

�ln ��xc,t� = −
ẋc�t�
2D1

+
ẍc�t�
t

4D1

�
�
n=1

nmax

n1−d/2f�n���
n=1

nmax

n−d/2f�n�� ,

�A1�

where

f�n� = exp�− 
t
� + �
i=1

d
ẋc

i �t�2

4D1
�n + 
t2
�

i=1

d
ẋc

i �t�ẍc
i �t�

4D1
�n2

− 
t3
�
i=1

d
ẍc

i �t�2

16D1
�n3� . �A2�

The integrals in Eq. �A1� cannot be computed exactly and
approximations are also hard to come by, since we do not a
priori know the magnitude of the walker’s velocity ẋc�t� and
acceleration ẍc�t�, which appear in the argument of the ex-
ponent. The main problem here is that one has an implicit
equation �given by Eq. �1� together with Eq. �A1�� in the
walker’s velocity. The only fact that can be safely deduced is
that for d�2, the two integrals are approximately equal; this
implies that the second term in Eq. �A1� vanishes in the limit

t→0 and that in high dimensions there are no further cor-
rections to the modified Langevin equation �6�. Clearly, in
the formalism of the Langevin equation it is not easily pos-
sible to systematically calculate corrections to the modified
Langevin equation �6�. However, it is to be emphasized that
the derivation of the latter equation �and the subsequent pre-
diction of the phase transition� eludes a treatment based on
the equation of motion of the walker’s probability density
function.
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